

15EC52

Fifth Semester B.E. Degree Examination, Feb./Mar. 2022 Digital Signal Processing

Time: 3 hrs .
Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
 2. Use of Normalized filter tables not permitted.

Module-1

1 a. Describe the process of frequency domain sampling and reconstruction of discrete time signals.
(06 Marks)
b. Compute 8-point DFT of $\mathrm{x}(\mathrm{n})=\{1,1,1\}$, also sketch magnitude and phase plot. ($\mathbf{1 0}$ Marks)

OR

2 a. Derive the Relationship of DFT with Z-transform.
(04 Marks)
b. State and prove circular time shift property of DFT.
(04 Marks)
c. Compute circular convolution of $\mathrm{x}(\mathrm{n})=\{1,2,3,4\}$ and $\mathrm{h}(\mathrm{n})=\{1,2,2\}$ using transform domain approach.
(08 Marks)

Module-2

3 a. Find the output $y(n)$ of a filter whose impulse response $h(n)=\{1,-2\}$ and input $x(n)=\{3,-2,4,1,5,7,2,-9\}$ using overlap add method. Use 5-point circular convolution in your approach.
(08 Marks)
b. Determine N-point circular correlation of $x(n)=\cos \left(\frac{2 \pi n}{N}\right)$ and $y(n)=\sin \left(\frac{2 \pi n}{N}\right)$ (08 Marks)

OR
4 a. State and prove Parseval's theorem of DFT.
(04 Marks)
b. Explain the linear filtering oflong data sequence using overlap-save method.
(08 Marks)
c. State and prove properties of twiddle factor.
(04 Marks)

Module-3

5 a. Develop DIT-FFT algorithm to compute DFT of a sequence and obtain the signal flow diagram for $\mathrm{N}=8$.
(12 Marks)
b. Compute 4-point IDFT of $X(K)=\{6,(-1-\mathrm{j}), 0,(-1+\mathrm{j})\}$ using DIT-FFT algorithm.
(04 Marks)
OR
6 a. Compute 8 -point DFT of $\mathrm{x}(\mathrm{n})=\{1,2,3,4,5,6,7,8\}$ using DIF-FFT algorithm.
(08 Marks)
b. Explain Geortzal algorithm for computation of DFT.
(08 Marks)

Module-4

7 a. Obtain DF-II and parallel realization of $\mathrm{H}(\mathrm{z})=\frac{1+\mathrm{z}^{-1}}{\left(1-\frac{1}{4} \mathrm{z}^{-1}\right)\left(1-\mathrm{z}^{-1}+\frac{1}{2} \mathrm{z}^{-2}\right)}$.
(08 Marks)
b. Derive the expression for order and cutoff frequency for a lowpass Butterworth filter.
(08 Marks)

OR

8 a. Design a digital filter $H(z)$ that when used in $A / D-H(z)-D / A$ structure gives an equivalent analog filter with the following specifications: passband attenuation of 3 dB at 500 Hz , stopband attenuation of 15 dB at 750 Hz with sampling rate 2 kHz . The filter is to be designed by performing a BLT on an analog system function. Use Butterworth prototype. Also obtain the difference equation.
(10 Marks)
b. Explain how an analog filter is mapped on to a digital filter using impulse invariance method. What are the limitations of the method?
(06 Marks)

Module-5

9 a. Derive the frequency response of a symmetric FIR low pass filter for $\mathrm{N}=$ odd.
(08 Marks)
b. A FIR filter is described by $y(n)=x(n)+\frac{2}{5} x(n-1)+\frac{3}{4} x(n-2)+\frac{1}{3} x(n-3)$. Draw its Lattice structure.
(08 Marks)

OR

10 a. Design a LPF with the frequency response

$$
H_{d}(j w)=\left\{\begin{array}{cc}
e^{-j 2 w} & |w|<\frac{\pi}{4} \\
0 & \frac{\pi}{4}<|w|<\pi
\end{array}\right.
$$

using rectangular window, also find its impulse response, frequency response and difference equation.
b. Realize the linear phase FIR filter having the impulse response $\mathrm{h}(\mathrm{n})=\left\{1, \frac{1}{4},-\frac{1}{8}, \frac{1}{4}, 1\right\}$.
(04 Marks)

